
Unsupervised Learning
Dimensionality Reduction - Latent Variable Analysis

A wide variety of techniques

Autoencoders

Nonlinear PCA, kernel PCA

Sparse PCA

Independent Component Analysis

Dimensionality Reduction
Neural Networks

Autoencoders

Autoencoders

An autoencoder is a network with one input layer, one or more hidden
layers and one output layer. This type of network aims at providing an
internal representation (the layer in the middle) by learning how to predict
the input from itself: x ≈ g(x).

October 25, 2022 4 / 75

Learning autoencoders

An auto-encoder is learned by backpropagation of the gradient. When
the autoencoder is sparse, the loss considered in general is quadratic
and penalized by an additive regularisation term, so that the activity
of each unit of the hidden layer is limited in average.

The autoencoder learns internal representations of complex data

October 25, 2022 5 / 75

Alternative Techniques for
Dimensionality Reduction

Example 1 - Finance

Analysis of interest rates

Example 1 - Finance (2)

Variables = 18 maturities
= 1M, 3M, 6M, 9M, 1Y, 2Y, ..., 30Y

Observations = History (monthly) over 8 years
= 96 bonds

Example 2 - Web 2.0

Last-FM - collaborative webradio

Example 2 - Web 2.0 (2)

28302 artists and their ”tags”

Variables = 735 tags
= trance, techno, ambient, alternative,

rap metal, rock, ...

Observations = 2840 users

Example 3 - Face Identification

Example 3 - Face Identification (2)

Variables = 256 x 256 pixels

Observations = 64 images

Common features

Multivariate data

Need for interpretation

Variability explained by combinations of the original variables

Data

Dimension = number of variables = p

Sample size = number of observations = n

Table n × p of quantitative variables

Graphical representation

⇒ Cloud of n points in Rp

Objectives

Reduction of the dimension

Visualization of the cloud in 2D or 3D

Explaining the variability

Principal Component Analysis
(PCA)

Rationale of PCA

→ Project the cloud onto the ”right” axis

Idée : maximize the dispersion

Rationale of PCA

→ Project the cloud onto the ”right” axis

Idée : maximize the dispersion

Statistical framework : data arrays

Observations : Xi ∈ Rp , 1 ≤ i ≤ n

Variable j : X1j , . . . ,Xnj

Matrix n × p of data X = (X1, . . . ,Xn)T

X = (Xij)i ,j =

 X11 . . . X1p
...

. . .
...

Xn1 . . . Xnp



Empirical covariance matrix

Barycenter

X̄ =
1

n

n∑
i=1

Xi ∈ Rp

Empirical covariance matrix (p × p)

S = (skj)k,j =
1

n

n∑
i=1

XiX
T
i − X̄ X̄T

Best direction

Direction of the projection a ∈ Rp

Sample (1D) = (aTX1, . . . , a
TXn)

Maximize the empirical variance in a :

s2
a = aTSa

Solution (linear algebra):

eigenvector g(1) of the largest eigenvalue l1

Diagonalization of S PSD

Eigenvalues : l1 ≥ . . . ≥ lp

Orthonormal basis of eigenvectors g(1), . . . , g(p)

Reduction of the matrix S = GLGT where

I L = diag(l1, . . . , lp) diagonal matrix p × p

I G orthogonal matrix p × p

G = (g(1), . . . , g(p)) = (gkj)k,j

Principal components (PC’s)

Principal components : for all vector z ∈ Rp

yj(z) = gT
(j)(z − X̄) , 1 ≤ j ≤ p

The matrix n × p

Y = (yj(Xi))1≤i≤n, 1≤j≤p

replaces the matrix X with the original data.

Empirical linear correlation ”Variable vs. PC”

Empirical linear correlation between variable k and the PC yj :

r̃kj = gkj

√
lj
skk

(définition)

Property:
p∑

j=1

r̃ 2
kj = 1

Empirical variance of the k-th variable

Part of the empirical variance of the k-th variable explained by
the first 2 PC’s (y1, y2) :

r̃ 2
k1 + r̃ 2

k2

We have :

l1 + l2 =

p∑
k=1

skk(r̃ 2
k1 + r̃ 2

k2)

2D Visualization : correlation disk

Correlation disk

Point (r̃k1, r̃k2) corresponds to variable k

Empirical variance

Part of the empirical variance of the cloud of points explained by
the PC yj :

vj =
lj

Tr(S)

où Tr(S) =

p∑
j=1

lj .

Visualization : scree-graph

Scree-graph

Axes = index j of the PC and part of the variance vj

Results of the PCA - Last-FM (1)

Projection of the cloud of points onto (PC1, PC2)

Results of the PCA - Last-FM (2)

Projection of the cloud of points onto (CP3, CP4)

Results of the PCA - Faces (1)

Data

Results of the PCA - Faces (2)

”Clean faces”

Results of the PCA - Faces (3)

Partial reconstruction (sub-column of the matrix Y)

Results of the PCA - Faces (4)

Projection of other images

A few remarks

PCA = linear tool

Orthogonality of principal components

In practice :

Reduction of the matrix R = (rkj)k,j of correlations

rkj =
skj√
skksjj

Computational difficulties :

Reduction of S in very high dimension

When does it work ?

When the clouds are of the form of ellipsöıds

Implicit model = gaussian model

Information carried by order statistics

Absence of outliers

Failure of PCA

⇒ Extension : non-linear PCA (with kernel)

Positive kernels

Definition

Let X be the space of the observations.

Positive kernel

A function k : X × X → R is a positive kernel iff

1 k is symmetric: k(x , x ′) = k(x ′, x) , ∀x , x ′ ∈ X
2 k is positive:

n∑
i=1

n∑
j=1

cicjk(xi , xj) ≥ 0, ∀ci ∈ R, ∀xi ∈ X , ∀n ≥ 1

A theorem in Functional Analysis

Theorem of Mercer

For all positive kernel k on X there exists a Hilbert space H and a
mapping Φ (’feature map’) such that:

k(x , x ′) =< Φ(x),Φ(x ′) >, ∀x , x ′ ∈ X

where < , > represents the inner product on H.

Comments

The theorem of Mercer is not constructive: it does not provide H, nor
Φ

In practice:

I H is a space of high (possibly infinite) dimension
I Φ is a non-linear mapping

H is a space used for representing the data, referred to as ”feature
space”

The kernel trick consists in avoiding to specify H and Φ when we
know they do exist!

Comments

The theorem of Mercer is not constructive: it does not provide H, nor
Φ

In practice:

I H is a space of high (possibly infinite) dimension
I Φ is a non-linear mapping

H is a space used for representing the data, referred to as ”feature
space”

The kernel trick consists in avoiding to specify H and Φ when we
know they do exist!

Comments

The theorem of Mercer is not constructive: it does not provide H, nor
Φ

In practice:
I H is a space of high (possibly infinite) dimension

I Φ is a non-linear mapping

H is a space used for representing the data, referred to as ”feature
space”

The kernel trick consists in avoiding to specify H and Φ when we
know they do exist!

Comments

The theorem of Mercer is not constructive: it does not provide H, nor
Φ

In practice:
I H is a space of high (possibly infinite) dimension
I Φ is a non-linear mapping

H is a space used for representing the data, referred to as ”feature
space”

The kernel trick consists in avoiding to specify H and Φ when we
know they do exist!

Comments

The theorem of Mercer is not constructive: it does not provide H, nor
Φ

In practice:
I H is a space of high (possibly infinite) dimension
I Φ is a non-linear mapping

H is a space used for representing the data, referred to as ”feature
space”

The kernel trick consists in avoiding to specify H and Φ when we
know they do exist!

Comments

The theorem of Mercer is not constructive: it does not provide H, nor
Φ

In practice:
I H is a space of high (possibly infinite) dimension
I Φ is a non-linear mapping

H is a space used for representing the data, referred to as ”feature
space”

The kernel trick consists in avoiding to specify H and Φ when we
know they do exist!

Image distances

Euclidean norm on Rm: ∀u ∈ Rm, ‖u‖ =
√
< u, u > where < , >

inner product on Rm

Euclidean distance:
d(u, v) = ‖u − v‖ =

√
< u, u > + < v , v > −2 < u, v >

Non-linear transform : Φ : Rd → Rm avec m > d

Kernel: k(x , x ′) =< Φ(x),Φ(x ′) >

Image distance:

dΦ(x , x ′) = ‖Φ(x)− Φ(x ′)‖ =
√

k(x , x) + k(x ′, x ′)− 2k(x , x ′)

⇒ the distance induced by Φ involves the kernel only

Image distances

Euclidean norm on Rm: ∀u ∈ Rm, ‖u‖ =
√
< u, u > where < , >

inner product on Rm

Euclidean distance:
d(u, v) = ‖u − v‖ =

√
< u, u > + < v , v > −2 < u, v >

Non-linear transform : Φ : Rd → Rm avec m > d

Kernel: k(x , x ′) =< Φ(x),Φ(x ′) >

Image distance:

dΦ(x , x ′) = ‖Φ(x)− Φ(x ′)‖ =
√

k(x , x) + k(x ′, x ′)− 2k(x , x ′)

⇒ the distance induced by Φ involves the kernel only

Image distances

Euclidean norm on Rm: ∀u ∈ Rm, ‖u‖ =
√
< u, u > where < , >

inner product on Rm

Euclidean distance:
d(u, v) = ‖u − v‖ =

√
< u, u > + < v , v > −2 < u, v >

Non-linear transform : Φ : Rd → Rm avec m > d

Kernel: k(x , x ′) =< Φ(x),Φ(x ′) >

Image distance:

dΦ(x , x ′) = ‖Φ(x)− Φ(x ′)‖ =
√

k(x , x) + k(x ′, x ′)− 2k(x , x ′)

⇒ the distance induced by Φ involves the kernel only

Image distances

Euclidean norm on Rm: ∀u ∈ Rm, ‖u‖ =
√
< u, u > where < , >

inner product on Rm

Euclidean distance:
d(u, v) = ‖u − v‖ =

√
< u, u > + < v , v > −2 < u, v >

Non-linear transform : Φ : Rd → Rm avec m > d

Kernel: k(x , x ′) =< Φ(x),Φ(x ′) >

Image distance:

dΦ(x , x ′) = ‖Φ(x)− Φ(x ′)‖ =
√

k(x , x) + k(x ′, x ′)− 2k(x , x ′)

⇒ the distance induced by Φ involves the kernel only

Image distances

Euclidean norm on Rm: ∀u ∈ Rm, ‖u‖ =
√
< u, u > where < , >

inner product on Rm

Euclidean distance:
d(u, v) = ‖u − v‖ =

√
< u, u > + < v , v > −2 < u, v >

Non-linear transform : Φ : Rd → Rm avec m > d

Kernel: k(x , x ′) =< Φ(x),Φ(x ′) >

Image distance:

dΦ(x , x ′) = ‖Φ(x)− Φ(x ′)‖ =
√

k(x , x) + k(x ′, x ′)− 2k(x , x ′)

⇒ the distance induced by Φ involves the kernel only

Gain

No algorithmic complication when replacing the original inner product
by another similarity measure

Turn a problem initially non-linear into a linear problem by sending
the data to a space of higher dimension

Example

Let f (x , y) = ax2 + bx + c − y = 0 be a quadratic surface decision
(parabolic in R2).

Key role of the transformation:

Φ : R2 → R4

x 7→
(
x2, x , 1, y

)T

Gain

No algorithmic complication when replacing the original inner product
by another similarity measure

Turn a problem initially non-linear into a linear problem by sending
the data to a space of higher dimension

Example

Let f (x , y) = ax2 + bx + c − y = 0 be a quadratic surface decision
(parabolic in R2).

Key role of the transformation:

Φ : R2 → R4

x 7→
(
x2, x , 1, y

)T

Gain

No algorithmic complication when replacing the original inner product
by another similarity measure

Turn a problem initially non-linear into a linear problem by sending
the data to a space of higher dimension

Example

Let f (x , y) = ax2 + bx + c − y = 0 be a quadratic surface decision
(parabolic in R2).

Key role of the transformation:

Φ : R2 → R4

x 7→
(
x2, x , 1, y

)T

Gain

No algorithmic complication when replacing the original inner product
by another similarity measure

Turn a problem initially non-linear into a linear problem by sending
the data to a space of higher dimension

Example

Let f (x , y) = ax2 + bx + c − y = 0 be a quadratic surface decision
(parabolic in R2).

Key role of the transformation:

Φ : R2 → R4

x 7→
(
x2, x , 1, y

)T

Gain

No algorithmic complication when replacing the original inner product
by another similarity measure

Turn a problem initially non-linear into a linear problem by sending
the data to a space of higher dimension

Example

Let f (x , y) = ax2 + bx + c − y = 0 be a quadratic surface decision
(parabolic in R2).

Key role of the transformation:

Φ : R2 → R4

x 7→
(
x2, x , 1, y

)T

From non-linear to linear

Example (continued)

One may write:

g(x2, x , 1, y) = ax2 + bx + c − y = 0

où g(u, v ,w , y) = au + bv + cw − y .

The equation g(u, v ,w , y) = 0 defines a decision surface that is linear in
R4.

A non-linear problem in a certain space can be formulated sometimes as a
linear problem in a ’larger’ space.

From non-linear to linear

Example (continued)

One may write:

g(x2, x , 1, y) = ax2 + bx + c − y = 0

où g(u, v ,w , y) = au + bv + cw − y .

The equation g(u, v ,w , y) = 0 defines a decision surface that is linear in
R4.

A non-linear problem in a certain space can be formulated sometimes as a
linear problem in a ’larger’ space.

From non-linear to linear

Kernel PCA

Classic PCA

Consider a cloud of points x1, . . . , xn centered at the origin.

Goals of PCA

Method for visualizing the data

Effective reduction of the dimension of the data

PCA consists in identifying the principal components of the data formed
by

1 the best direction for projecting the cloud of points
i.e. that with maximal variance

2 next, the best direction for projecting that is orthogonal to the first

3 and, so on so forth, until the n-th

Classic PCA

Consider a cloud of points x1, . . . , xn centered at the origin.

Goals of PCA

Method for visualizing the data

Effective reduction of the dimension of the data

PCA consists in identifying the principal components of the data formed
by

1 the best direction for projecting the cloud of points
i.e. that with maximal variance

2 next, the best direction for projecting that is orthogonal to the first

3 and, so on so forth, until the n-th

Classic PCA

Consider a cloud of points x1, . . . , xn centered at the origin.

Goals of PCA

Method for visualizing the data

Effective reduction of the dimension of the data

PCA consists in identifying the principal components of the data formed
by

1 the best direction for projecting the cloud of points
i.e. that with maximal variance

2 next, the best direction for projecting that is orthogonal to the first

3 and, so on so forth, until the n-th

Classic PCA

Consider a cloud of points x1, . . . , xn centered at the origin.

Goals of PCA

Method for visualizing the data

Effective reduction of the dimension of the data

PCA consists in identifying the principal components of the data formed
by

1 the best direction for projecting the cloud of points
i.e. that with maximal variance

2 next, the best direction for projecting that is orthogonal to the first

3 and, so on so forth, until the n-th

Classic PCA

Consider a cloud of points x1, . . . , xn centered at the origin.

Goals of PCA

Method for visualizing the data

Effective reduction of the dimension of the data

PCA consists in identifying the principal components of the data formed
by

1 the best direction for projecting the cloud of points
i.e. that with maximal variance

2 next, the best direction for projecting that is orthogonal to the first

3 and, so on so forth, until the n-th

PCA

PCA (continued)

Orthogonal projection of a vector x onto direction w ∈ Rd :

pw (x) =
< x ,w >

‖w‖

Empirical variance of the cloud of points along direction w :

V(pw) =
1

n

n∑
i=1

< xi ,w >2

‖w‖2

Empirical covariance matrix Σ = 1
n

∑n
i=1 xi x

T
i

We then have :

V(pw) =
wTΣw

‖w‖2

PCA (continued)

Orthogonal projection of a vector x onto direction w ∈ Rd :

pw (x) =
< x ,w >

‖w‖

Empirical variance of the cloud of points along direction w :

V(pw) =
1

n

n∑
i=1

< xi ,w >2

‖w‖2

Empirical covariance matrix Σ = 1
n

∑n
i=1 xi x

T
i

We then have :

V(pw) =
wTΣw

‖w‖2

PCA (continued)

Orthogonal projection of a vector x onto direction w ∈ Rd :

pw (x) =
< x ,w >

‖w‖

Empirical variance of the cloud of points along direction w :

V(pw) =
1

n

n∑
i=1

< xi ,w >2

‖w‖2

Empirical covariance matrix Σ = 1
n

∑n
i=1 xi x

T
i

We then have :

V(pw) =
wTΣw

‖w‖2

PCA (continued)

Orthogonal projection of a vector x onto direction w ∈ Rd :

pw (x) =
< x ,w >

‖w‖

Empirical variance of the cloud of points along direction w :

V(pw) =
1

n

n∑
i=1

< xi ,w >2

‖w‖2

Empirical covariance matrix Σ = 1
n

∑n
i=1 xi x

T
i

We then have :

V(pw) =
wTΣw

‖w‖2

Optimization problem

First principal component

argmax
w

V(pw) =
wTΣw

‖w‖2

Solution

The principal components are the eigenvectors of Σ sorted by decreasing
order of magnitude of the corresponding eigenvalues.

Remark : the matrix Σ is PSD, hence diagonalizable in an orthonormal
basis.

Optimization problem

First principal component

argmax
w

V(pw) =
wTΣw

‖w‖2

Solution

The principal components are the eigenvectors of Σ sorted by decreasing
order of magnitude of the corresponding eigenvalues.

Remark : the matrix Σ is PSD, hence diagonalizable in an orthonormal
basis.

Optimization problem

First principal component

argmax
w

V(pw) =
wTΣw

‖w‖2

Solution

The principal components are the eigenvectors of Σ sorted by decreasing
order of magnitude of the corresponding eigenvalues.

Remark : the matrix Σ is PSD, hence diagonalizable in an orthonormal
basis.

PCA (continued)
One searches for a vector v and a real number λ such that:

Σv = λv

Observe that we have:

Σv =
1

n

n∑
i=1

< xi , v > xi

Thus:

v =
n∑

i=1

(< xi , v >

nλ

)
xi =

n∑
i=1

αixi

One uses
xTj Σv = λ < xj , v >, ∀j

and one substitutes the expressions for Σ and v :

1

n

n∑
i=1

αi

〈
xj ,

n∑
k=1

< xk , xi > xk

〉
= λ

n∑
i=1

αi < xj , xi >

PCA (continued)
One searches for a vector v and a real number λ such that:

Σv = λv

Observe that we have:

Σv =
1

n

n∑
i=1

< xi , v > xi

Thus:

v =
n∑

i=1

(< xi , v >

nλ

)
xi =

n∑
i=1

αixi

One uses
xTj Σv = λ < xj , v >, ∀j

and one substitutes the expressions for Σ and v :

1

n

n∑
i=1

αi

〈
xj ,

n∑
k=1

< xk , xi > xk

〉
= λ

n∑
i=1

αi < xj , xi >

PCA (continued)

Denote by K = (< xi , xj >)i ,j the Gram matrix

One may then write the system:

K 2α = nλKα

To find α, one thus solves the problem

Kα = nλα

PCA (continued)

Denote by K = (< xi , xj >)i ,j the Gram matrix

One may then write the system:

K 2α = nλKα

To find α, one thus solves the problem

Kα = nλα

PCA (continued)

Denote by K = (< xi , xj >)i ,j the Gram matrix

One may then write the system:

K 2α = nλKα

To find α, one thus solves the problem

Kα = nλα

Limitations of classic PCA

it is essentially tailored to the case of multivariate Gaussian data

I in general, non-correlation does not imply independence of the principal
directions

I alternative : Independent Component Analysis

it is tailored to detect linear structures

I Not all clouds of points are ellipsöıds!!
I alternative : Kernel PCA

Limitations of classic PCA

it is essentially tailored to the case of multivariate Gaussian data
I in general, non-correlation does not imply independence of the principal

directions

I alternative : Independent Component Analysis

it is tailored to detect linear structures

I Not all clouds of points are ellipsöıds!!
I alternative : Kernel PCA

Limitations of classic PCA

it is essentially tailored to the case of multivariate Gaussian data
I in general, non-correlation does not imply independence of the principal

directions
I alternative : Independent Component Analysis

it is tailored to detect linear structures

I Not all clouds of points are ellipsöıds!!
I alternative : Kernel PCA

Limitations of classic PCA

it is essentially tailored to the case of multivariate Gaussian data
I in general, non-correlation does not imply independence of the principal

directions
I alternative : Independent Component Analysis

it is tailored to detect linear structures

I Not all clouds of points are ellipsöıds!!
I alternative : Kernel PCA

Limitations of classic PCA

it is essentially tailored to the case of multivariate Gaussian data
I in general, non-correlation does not imply independence of the principal

directions
I alternative : Independent Component Analysis

it is tailored to detect linear structures
I Not all clouds of points are ellipsöıds!!

I alternative : Kernel PCA

Limitations of classic PCA

it is essentially tailored to the case of multivariate Gaussian data
I in general, non-correlation does not imply independence of the principal

directions
I alternative : Independent Component Analysis

it is tailored to detect linear structures
I Not all clouds of points are ellipsöıds!!
I alternative : Kernel PCA

Kernel PCA

Apply a transformation Φ that sends the cloud of points X to a space
where the structure is linear

The covariance matrix of Φ(X) = (Φ(x1), . . . ,Φ(xn))T is then

Σ =
1

n

n∑
i=1

Φ(xi)Φ(xi)
T

Kernel trick : K =
(
k(xi , xj)

)
i ,j

=
(
Φ(xi)

TΦ(xj)
)
i ,j

Kernel PCA

Apply a transformation Φ that sends the cloud of points X to a space
where the structure is linear

The covariance matrix of Φ(X) = (Φ(x1), . . . ,Φ(xn))T is then

Σ =
1

n

n∑
i=1

Φ(xi)Φ(xi)
T

Kernel trick : K =
(
k(xi , xj)

)
i ,j

=
(
Φ(xi)

TΦ(xj)
)
i ,j

Kernel PCA

Apply a transformation Φ that sends the cloud of points X to a space
where the structure is linear

The covariance matrix of Φ(X) = (Φ(x1), . . . ,Φ(xn))T is then

Σ =
1

n

n∑
i=1

Φ(xi)Φ(xi)
T

Kernel trick : K =
(
k(xi , xj)

)
i ,j

=
(
Φ(xi)

TΦ(xj)
)
i ,j

Kernel PCA (continued)

Principal ”Directions” of the form:

pi (x) =
n∑

j=1

αi ,jk(xj , x)

the vector αi = (αi ,1, . . . , αi ,n) is solution to the optimisation
problem:

max
α

αTK 2α

αTKα

under the constraints: αT
i Kαj pour j = 1, . . . , i − 1

one solves the problem:
Kα = nλα

Kernel PCA (continued)

Principal ”Directions” of the form:

pi (x) =
n∑

j=1

αi ,jk(xj , x)

the vector αi = (αi ,1, . . . , αi ,n) is solution to the optimisation
problem:

max
α

αTK 2α

αTKα

under the constraints: αT
i Kαj pour j = 1, . . . , i − 1

one solves the problem:
Kα = nλα

Kernel PCA (continued)

Principal ”Directions” of the form:

pi (x) =
n∑

j=1

αi ,jk(xj , x)

the vector αi = (αi ,1, . . . , αi ,n) is solution to the optimisation
problem:

max
α

αTK 2α

αTKα

under the constraints: αT
i Kαj pour j = 1, . . . , i − 1

one solves the problem:
Kα = nλα

Independent Component
Analysis (ICA)

The ”cocktail-party” problem

PCA = based on the notion of correlation

Appropriate notion = notion of independence

Correlation vs. Independence

Notice that : X and Y independent ⇒ cov(X ,Y) = 0

Reciprocal false in general, except in the Gaussian case..

From PCA to ICA... (much more difficult !)

Formulation of the problem

S = (S1, . . . , Sd)T unknown independent and non-Gaussian
sources

A mixing matrix d × d unknown

X = (X1, . . . ,Xd)T observations (sensors), one assumes
Cov(X) = I

One has the system : X = AS

One searches for A orthogonal such that:

S = ATX has independent components

Information theory

Entropy of a r.v. Z ∼ p(z) :

H(Z) = −E(log(p(Z)))

Consider the r.v. T with variance v , then

Z ∼ N (0, 1) → max
T

H(T)

Mutual information for S = (S1, . . . , Sd)T :

I (S) =
d∑

i=1

H(Si)− H(S)

ICA via entropy method

Property of the entropy : if S = ATX

H(S) = H(X) + log(| det(A)|)

One then has the following optimization problem:

→ min
A:AT A=I

I (ATX) =
d∑

i=1

H(Si)− H(X)

Interpretation : deviation from the Gaussian behavior
(minimization of the entropy of the components)

	Cas de l'analyse en composantes principales et de la régression

