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e Autoencoders

e Nonlinear PCA, kernel PCA
e Sparse PCA

e Independent Component Analysis
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Dimensionality Reduction
Neural Networks



Autoencoders

An autoencoder is a network with one input layer, one or more hidden
layers and one output layer. This type of network aims at providing an

internal representation (the layer in the middle) by learning how to predict
the input from itself: x ~ g(x).
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Learning autoencoders

@ An auto-encoder is learned by backpropagation of the gradient. When
the autoencoder is sparse, the loss considered in general is quadratic
and penalized by an additive regularisation term, so that the activity
of each unit of the hidden layer is limited in average.

@ The autoencoder learns internal representations of complex data
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Alternative Techniques for
Dimensionality Reduction



Analysis of interest rates
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e Variables = 18 maturities

= 1M, 3M, 6M, 9M, 1Y, 2Y, ..., 30Y

e Observations = History (monthly) over 8 years
= 96 bonds
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Example 2 - Web 2.0

|C\5tfm the social music revolution

Musique  Utilisateurs

Last-FM - collaborative webradio
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e 28302 artists and their "tags"

e Variables = 735 tags

= trance, techno, ambient, alternative,
rap metal, rock, ...

o Observations = 2840 users
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Example 3 - Face ldentification




e Variables = 256 x 256 pixels

e Observations = 64 images
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e Multivariate data

@ Need for interpretation

e Variability explained by combinations of the original variables
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e Dimension = number of variables = p

e Sample size = number of observations = n

e Table n x p of quantitative variables
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e Reduction of the dimension

o Visualization of the cloud in 2D or 3D

e Explaining the variability
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Principal Component Analysis
(PCA)



— Project the cloud onto the "right” axis
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— Project the cloud onto the "right” axis
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@ Observations: X; e RP |, 1<i<n
o Variablej . le, .o ,X,,j

e Matrix n x p of data X = (X,

L X)T
Xll le

X=Xyij=1| : :
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e Barycenter

e Empirical covariance matrix (p x p)

S =

en ZXXT XXT
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Best direction

e Direction of the projection a € RP
e Sample (1D) = (a’ Xi,...,a’ X,)

e Maximize the empirical variance in a:

s2=2a'Sa

e Solution (linear algebra):

eigenvector g(1) of the largest eigenvalue /



Diagonalization of S PSD

o Eigenvalues: 1 > ... >/,
o Orthonormal basis of eigenvectors g, ..., g(p)
e Reduction of the matrix S = GLG" where

» L =diag(h,...,l,) diagonal matrix p x p
» G orthogonal matrix p X p

G = (g(l)v . ag(p)) = (gkj)k,j



Principal components (PC'’s)

@ Principal components : for all vector z € R”

vi(2) =gg(z—X), 1<j<p
e The matrix n X p

Y = (y;(Xi)h<i<n, 1<i<p

replaces the matrix X with the original data.



Empirical linear correlation ” Variable vs. PC”

e Empirical linear correlation between variable k and the PC y; :
_ I .
Fij = 8t/ — (définition)
Skk

p

Zf,szl

j=1

e Property:



Empirical variance of the k-th variable

e Part of the empirical variance of the k-th variable explained by
the first 2 PC's (y1, o) :

) =2
M +
e We have :

p
h+h= Zskk(Flgl + )
k=1

e 2D Visualization : correlation disk



e Point (P, fx2) corresponds to variable k
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the PC y;:

e Part of the empirical variance of the cloud of points explained by

p

Tr(S)
ol TH(S)=> I
j=1
o Visualization

scree-graph
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e Axes = index j of the PC and part of the variance v;

!
v

it
-

o>



o>

02 0.4 06

-0.2 o
Component 1

-0.4

-0.6

06

04t

02
0.8

-0
-0.4
—06}
-08

gusuodwon

Projection of the cloud of points onto (PC1, PC2)




Results of the PCA - Last-FM (2)

Projection of the cloud of points onto (CP3, CP4)

0.8

06} T 4
op
o +

04F 4

0.2

Component 4
4

-04p

P h

06 aliekenst . 1 i

0.6 -04 -0.2 o 0.2 0.4 0.6 08
Component 3




Results of the PCA - Faces (1)
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Results of the PCA - Faces (3)

Partial reconstruction (sub-column of the matrix Y)




Results of the PCA - Faces (4)

Projection of other images
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A few remarks

e PCA = linear tool
@ Orthogonality of principal components

e In practice :

Reduction of the matrix R = ()« of correlations

5kj

\/ SkkSjj

rkj =

o Computational difficulties :
Reduction of S in very high dimension



@ When the clouds are of the form of ellipsoids

e Implicit model = gaussian model

e Information carried by order statistics

e Absence of outliers
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Positive kernels



Let X be the space of the observations.

A function k : X x X — R is a positive kernel iff
Q k is symmetric: k(x,x') = k(x',x), Vx,x' € X
Q k is positive:

n n
ZZc;cjk(x;,xj-) >0, VgeR, VxeX, Vn>1
i=1 j=1

[m]
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For all positive kernel k on X there exists a Hilbert space H and a
mapping ® ('feature map’) such that:

k(x,x") =< ®(x), d(x) >,

vx,x' € X
where <, > represents the inner product on .

[m]
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@ The theorem of Mercer is not constructive: it does not provide H, nor
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@ The theorem of Mercer is not constructive: it does not provide H, nor
@ In practice:
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@ The theorem of Mercer is not constructive: it does not provide H, nor
d
@ In practice:

» H is a space of high (possibly infinite) dimension
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@ The theorem of Mercer is not constructive: it does not provide H, nor
d
@ In practice:

» H is a space of high (possibly infinite) dimension
» @ is a non-linear mapping
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@ The theorem of Mercer is not constructive: it does not provide H, nor
d
@ In practice:

» @ is a non-linear mapping

» H is a space of high (possibly infinite) dimension

@ 7 is a space used for representing the data, referred to as "feature
space”
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Comments

@ The theorem of Mercer is not constructive: it does not provide H, nor
[O)

@ In practice:
» H is a space of high (possibly infinite) dimension
» @ is a non-linear mapping

@ 7 is a space used for representing the data, referred to as "feature
space”

@ The kernel trick consists in avoiding to specify H and ® when we
know they do exist!



e Euclidean norm on R™: Yu € R™, |lu|| = /< u,u > where <, >
inner product on R™
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e Euclidean norm on R™: Yu € R™, |lu|| = /< u,u > where <, >
inner product on R™

@ Euclidean distance:

dlu,v)=lu—v||=V/<uu>+<v,v>-2<uv>
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e Euclidean norm on R™: Yu € R™, |lu|| = /< u,u > where <, >
inner product on R™

@ Euclidean distance:

dlu,v)=lu—v||=V/<uu>+<v,v>-2<uv>

@ Non-linear transform : ® : R — R™ avec m > d
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e Euclidean norm on R™: Yu € R™, |lu|| = /< u,u > where <, >
inner product on R™

@ Euclidean distance:
dlu,v)=lu—v||=V/<uu>+<v,v>-2<uv>

@ Non-linear transform : ® : R — R™ avec m > d

e Kernel: k(x,x") =< ®(x), d(x') >

.
n}
8
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Image distances

e Euclidean norm on R™: Yu € R™, ||lu|| = /< u,u > where <, >
inner product on R™

@ Euclidean distance:
dlu,v)=|lu—v|]|=vV<uu>+<v,v>-2<uv>

@ Non-linear transform : ® : R — R™ avec m > d
e Kernel: k(x,x) =< ®(x),d(x') >

@ Image distance:

do(x,x") = [|P(x) — &(X)| = \/k(x,x) + k(x', x") — 2k(x, x")

= the distance induced by ® involves the kernel only



@ No algorithmic complication when replacing the original inner product
by another similarity measure
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@ No algorithmic complication when replacing the original inner product
by another similarity measure

@ Turn a problem initially non-linear into a linear problem by sending
the data to a space of higher dimension
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@ No algorithmic complication when replacing the original inner product
by another similarity measure

@ Turn a problem initially non-linear into a linear problem by sending
the data to a space of higher dimension
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by another similarity measure

@ No algorithmic complication when replacing the original inner product

@ Turn a problem initially non-linear into a linear problem by sending
the data to a space of higher dimension

Let f(x,y) = ax?> + bx + ¢ — y = 0 be a quadratic surface decision
(parabolic in R?).
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by another similarity measure

@ No algorithmic complication when replacing the original inner product

@ Turn a problem initially non-linear into a linear problem by sending
the data to a space of higher dimension

Let f(x,y) = ax?> + bx + ¢ — y = 0 be a quadratic surface decision
(parabolic in R?).

Key role of the transformation:

¢ : R> — R

X (xz,x,l,y)T

[m]
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One may write:

g(x®,x,1,y)=ax®*+bx+c—y=0
ot g(u,v,w,y) =au+bv+cw—y.

R*.

The equation g(u, v, w, y) = 0 defines a decision surface that is linear in
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From non-linear to linear

Example (continued)
One may write:
g(x®,x,1,y)=ax*+bx+c—y =0

ot g(u,v,w,y) =au+ bv+cw —y.

The equation g(u, v, w,y) = 0 defines a decision surface that is linear in
R*.

A non-linear problem in a certain space can be formulated sometimes as a
linear problem in a 'larger’ space.




¢

Input Space Feature Space
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Kernel PCA



Consider a cloud of points xi, ..., x, centered at the origin.
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Consider a cloud of points xi, ..., x, centered at the origin

@ Method for visualizing the data

o Effective reduction of the dimension of the data
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Consider a cloud of points xi, ..., x, centered at the origin.

@ Method for visualizing the data

o Effective reduction of the dimension of the data

by

PCA consists in identifying the principal components of the data formed

@ the best direction for projecting the cloud of points
i.e. that with maximal variance
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Classic PCA

Consider a cloud of points xi, ..., x, centered at the origin.

Goals of PCA
@ Method for visualizing the data

o Effective reduction of the dimension of the data

PCA consists in identifying the principal components of the data formed
by

© the best direction for projecting the cloud of points
i.e. that with maximal variance

@ next, the best direction for projecting that is orthogonal to the first



Classic PCA

Consider a cloud of points xi, ..., x, centered at the origin.

Goals of PCA
@ Method for visualizing the data

o Effective reduction of the dimension of the data

PCA consists in identifying the principal components of the data formed
by

© the best direction for projecting the cloud of points

i.e. that with maximal variance
@ next, the best direction for projecting that is orthogonal to the first
© and, so on so forth, until the n-th



PCA




e Orthogonal projection of a vector x onto direction w € RY:
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e Orthogonal projection of a vector x onto direction w € RY

@ Empirical variance of the cloud of points along direction w:

1 “ <X,'W>2
Vipw) = D S
W) =0 2 T
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PCA (continued)

e Orthogonal projection of a vector x onto direction w € RY:

@ Empirical variance of the cloud of points along direction w:

1 < X, w >2
Vi) =52
=1

P . . _ 1 n i T
e Empirical covariance matrix ¥ = = > ; x; X;



PCA (continued)

e Orthogonal projection of a vector x onto direction w € RY:

@ Empirical variance of the cloud of points along direction w:

1 < X, w >2
Vi) =52
=1

o Empirical covariance matrix £ = 237 | x; x.T
@ We then have : .
w'XZw
Vo) = e
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-
w'Xw
argmax V(py) = ——
w w2
The principal components are the eigenvectors of ¥ sorted by decreasing
order of magnitude of the corresponding eigenvalues.




wlTw

V(pw) = ——
T I ) e

The principal components are the eigenvectors of ¥ sorted by decreasing
order of magnitude of the corresponding eigenvalues.

Remark : the matrix X is PSD, hence diagonalizable in an orthonormal
basis.
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One searches for a vector v and a real number A such that:

Yv=JAv
Observe that we have:
1 n
Zv:;Z<x,-,v> X;
=1
Thus:

n

=3

n
< Xj,V >)
— ) Xi= E QX
nA
i=1 i=1
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PCA (continued)

One searches for a vector v and a real number )\ such that:
v =JA\v

Observe that we have:

1[1
:*Z<X;,V>X,'
n=<
i=1
Thus: .
< Xj,V >
=3 ()= Yo

One uses
XJ-TZv:)\<xj,v>, vy

and one substitutes the expressions for X and v:

1 n n n
;Za; Xj,Z<Xk,X,'> Xk :)\Za;<xj-7x,->
i=1 k=1 i=1



@ Denote by K = (< xj, xj >);j the Gram matrix
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@ Denote by K = (< xj, xj >);j the Gram matrix

@ One may then write the system:

K?a = n\Ka
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@ Denote by K = (< xj, xj >);j the Gram matrix

@ One may then write the system:

K%a = n\Ka
@ To find «, one thus solves the problem

Ko = n\o
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@ it is essentially tailored to the case of multivariate Gaussian data
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@ it is essentially tailored to the case of multivariate Gaussian data
directions

» in general, non-correlation does not imply independence of the principal

o>



@ it is essentially tailored to the case of multivariate Gaussian data
» in general, non-correlation does not imply independence of the principal
directions

» alternative : Independent Component Analysis
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Limitations of classic PCA

@ it is essentially tailored to the case of multivariate Gaussian data

» in general, non-correlation does not imply independence of the principal
directions
» alternative : Independent Component Analysis

@ it is tailored to detect linear structures



Limitations of classic PCA

@ it is essentially tailored to the case of multivariate Gaussian data

» in general, non-correlation does not imply independence of the principal
directions
» alternative : Independent Component Analysis

@ it is tailored to detect linear structures
» Not all clouds of points are ellipsoids!!



Limitations of classic PCA

@ it is essentially tailored to the case of multivariate Gaussian data

» in general, non-correlation does not imply independence of the principal
directions

» alternative : Independent Component Analysis

@ it is tailored to detect linear structures

» Not all clouds of points are ellipsoids!!
» alternative : Kernel PCA



@ Apply a transformation @ that sends the cloud of points X to a space
where the structure is linear
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@ Apply a transformation @ that sends the cloud of points X to a space
where the structure is linear

@ The covariance matrix of ®(X) = (®(x1), ..., P(x,))" is then

=23 0()o(x)
i=1

o>



Kernel PCA

@ Apply a transformation @ that sends the cloud of points X to a space
where the structure is linear

@ The covariance matrix of ®(X) = (®(x1),...,P(x,))" is then

n

> o(xi)e(xi) "

i=1

1
Y =—
n

e Kernel trick : K = (k(X,-,Xj)),-J = (q)(Xi)Tq)()(j))i,j



@ Principal " Directions” of the form:

pi(x) =Y aijk(xj, x)
=1
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@ Principal " Directions” of the form:

pi(x) =Y aijk(xj, x)
=1

e the vector a; = (a1,
problem:

., p) is solution to the optimisation

aT K2a
max
(07

aTKa
under the constraints: a,TKaj pour j=1,...,i—1

o>



Kernel PCA (continued)

@ Principal " Directions” of the form:

pi(x) = aijk(x,x)
j=1

e the vector o = (@ 1,...,;p) is solution to the optimisation
problem:
aK2a
max ————
a alKa
under the constraints: o Kaj pour j=1,...,i—1

@ one solves the problem:
Ka = n\a



Independent Component
Analysis (ICA)



Blind Source —r\fes';f"r‘::"
L aion 1" Signals

o PCA = based on the notion of correlation

@ Appropriate notion = notion of independence

o>



Correlation vs. Independence

e Notice that : X and Y independent = cov(X,Y) =0
e Reciprocal false in general, except in the Gaussian case..

e From PCA to ICA... (much more difficult !)



Formulation of the problem

o S=(S1,...,54)7 unknown independent and non-Gaussian
sources

@ A mixing matrix d x d unknown

o X =(Xy,...,Xq4)7 observations (sensors), one assumes
Cov(X) =1

@ One has the system : X = AS

@ One searches for A orthogonal such that:

S=ATX has independent components



Information theory

e Entropy of a rv. Z ~ p(z) :

H(Z) = —E(log(p(2)))
o Consider the r.v. T with variance v, then

Z~N(0,1) — mﬁxH(T)

o Mutual information for S = (Sy,...,54)" :



ICA via entropy method

e Property of the entropy : if S = ATX
H(S) = H(X) + log(| det(A)|)
@ One then has the following optimization problem:
d

= min [(ATX) =Y H(S) - H(X)

A:ATA=I -
i=1

@ Interpretation : deviation from the Gaussian behavior
(minimization of the entropy of the components)



	Cas de l'analyse en composantes principales et de la régression

